skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chatterjee, Arka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hexagonal boron nitride (h-BN) has emerged as a promising platform for generating room temperature single photons exhibiting high brightness and spin-photon entanglement. However, improving emitter purity, stability, and scalability remains a challenge for quantum technologies. Here, we demonstrate highly pure and stable single-photon emitters (SPEs) in h-BN by directly growing carbon-doped, centimeter-scale h-BN thin films using the pulsed laser deposition (PLD) method. These SPEs exhibit room temperature operation with polarized emission, achieving ag(2)(0) value of 0.015, which is among the lowest reported for room temperature SPEs and the lowest achieved for h-BN SPEs. It also exhibits high brightness (~0.5 million counts per second), remarkable stability during continuous operation (>15 min), and a Debye-Waller factor of 45%. First-principles calculations reveal unique carbon defects responsible for these properties, enabled by PLD’s low-temperature synthesis and in situ doping. Our results demonstrate an effective method for large-scale production of high-purity, stable SPEs in h-BN, enabling robust quantum optical sources for various quantum applications. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026